Search Books

  • Search Full Site
  • Display Book Titles
  • Display Book Paragraphs
7 paragraphs found in the 1 Book listed below
Capital: A Critique of Political Economy, Vol. III. The Process of Capitalist Production as a Whole; Marx, Karl
7 paragraphs found.
Part I, Chapter 5

Another raise in the rate of profit is produced, not by economies in the labor creating the constant capital, but by economies in the operation of this capital itself. On one hand, the concentration of laborers, and their co-operation on a large scale, saves constant capital. The same buildings, appliances for fuel and light, etc., cost relatively less for large scale than for small scale production. The same is true of power and working machinery. Although their absolute value increases, it falls relatively in comparison to the growing extension of production and the magnitude of the variable capital, or to the mass of labor-power set in motion. The economy realized by a certain capital within its own line of production is first and foremost an economy in labor, that is to say, a reduction of the paid labor of its own laborers. The previously mentioned economy is distinguished from this one by the fact that it accomplished the greatest possible appropriation of the unpaid labor in other lines in the most economical way, that is to say, with as little expense as a certain scale of production will permit. To the extent that this economy does not rest on the previously mentioned exploitation of the productivity of the social labor employed in the production of constant capital, or in an economy arising from the operation of the constant capital itself, it is due either directly to the co-operation and social nature of labor within a certain line of production, or to the production of machinery, etc., on a scale in which its value does not grow at the same rate as its use-value.


As late as October, 1855, Leonard Horner complained about the resistance of numerous manufacturers against the legal requirements concerning protective appliances on horizontal shafts, although the dangerous character of these shafts was continually proved by accidents, many of them fatal, and although the appliance for protection against this danger was neither expensive nor interfered with the work. (Rep. Fact., October, 1855, page 6.) In their resistance against this and other legal requirements, the manufacturers are ably seconded by the unpaid justices of the peace, who are themselves manufacturers or their friends, and who render their verdicts accordingly. What sort of verdicts those gentlemen rendered was revealed by Superior Judge Campbell, who said with reference to one of them, against which an appeal was made to him: "This is not an interpretation of an act of parliament, it is simply its abolition." (L. c., page 11.) Horner says in the same report that in many factories machinery is started up without warning the laborers. Since there is always something to look after, even when the machinery is at a standstill, there are always many hands and fingers busy on it, and accidents happen continually from the omission of a mere signal. (L. c., page 44.) The manufacturers of that period had formed a union opposing the factory legislation, the so-called "National Association for the Amendment of the Factory Laws" in Manchester, which collected, in March, 1855, more than 50,000 by an assessment of 2 shillings per horse-power. This sum was to pay for lawsuits of the members of the association against court proceedings instigated by factory inspectors, all cases of this kind being fought by the union. The issue was to prove that killing is no murder when done for profit. The factory inspector for Scotland, Sir John Kincaid, relates of a certain firm in Glasgow that it used the old iron of its factory to make protective appliances for all its machinery, the cost being 9 1 shilling. If this firm had joined the manufacturers' union, it would have had to pay an assessment of 11 on its 110 horse powers. This would have been more than the cost of all its protective appliances. But the National Association had been organized in 1854 for the express purpose of opposing the law which prescribed such protection. The manufacturers had paid no attention whatever to this law during all the time from 1844 to 1854. At the instruction of Palmerston the factory inspectors then informed the manufacturers that the law would hence-forth be enforced. The manufacturers immediately founded their union. Many of its most prominent members were justices of the peace who were supposed to carry out this law. When the new Minister of the Interior, Sir George Grey, offered a compromise, in April, 1855, to the effect that the government would be content with practically nominal appliances for protection, the Association declined even this, with indignation. In various lawsuits, the famous engineer Thomas Fairbairn permitted the manufacturers to throw the weight of his name into the scale in favor of economies and in defense of the violated liberty of capital. The chief of factory inspectors, Leonard Horner, was persecuted and maligned by the manufacturers in every conceivable manner.


But the manufacturers did not rest until they had obtained a writ of the Queen's Bench, which interpreted the Law of 1844 to the effect that no protective appliances were prescribed for horizontal shafts installed more than seven feet above the ground. And finally they succeeded in 1856 in securing an act of parliament entirely satisfactory to them, by the help of the hypocrite Wilson Patten, one of those pious souls whose ostentatious religion is always ready to do dirty work for the knights of the money-bag. This act practically deprived the laborers of all special protection and referred them to the common courts for the recovery of damages in cases of accident by machinery (which amounted practically to a mockery, on account of the excessive cost of lawsuits). On the other hand, this act made it almost impossible for the manufacturers to lose a lawsuit, by providing in a very nicely worded clause for expert testimony. As a result, the accidents increased rapidly. In the six months from May to October, 1858, Inspector Baker reported an increase of accidents exceeding that of the preceding six months by 21%. He was of the opinion that 36.7% of these accidents might have been avoided. It is true, that the number of accidents in 1858 and 1859 was considerably below that of 1845 and 1846. It was 29% less, although the number of laborers had increased by 20% in the industries subject to inspection. But what was the reason for this? So far as the moot question was settled in 1865, it was due mainly to the introduction of new machinery which was provided with protective appliances from the start and to which the manufacturer did not object because they required no extra expense. A few laborers had also succeeded in securing heavy damages for their lost arms and having this sentence upheld even by the highest courts. (Rep. Fact., April 30, 1861, page 31, and April 1862, page 17.)


This may suffice to illustrate the economies in appliances by which life and limb of laborers (also children) are to be protected against dangers arising in the handling and operating of machinery.


Work in Closed Rooms. It is well known to what extent economies of space, and thus of buildings, crowd the laborers into narrow rooms. This is intensified by economies in appliances for ventilation. These two economies, coupled with an increase of the labor time, produce a large increase in the diseases of the respiratory organs, and consequently an increase of mortality. The following illustrations have been taken from the Reports on Public Health, 6th report, 1863. This report was compiled by Dr. John Simon, well-known from our volume I.


The milliners and dress makers occupied our attention also in volume I, chapter X, 3, so far as overwork was concerned. Their work rooms are described in the present report by Dr. Ord. Even if they are better during the day, they become overheated, foul, and unhealthy during the hours in which gas is burned. Dr. Ord found in 34 shops of the better sort that the average number of cubic feet per worker was as follows: "In four cases more than 500; in four other cases 400-500; in five cases 200-250; in four cases 150-200; and finally in nine cases only 100-150. Even the most favorable of these cases barely suffices for continued work, when the room is not perfectly ventilated...Even with good ventilation the workshops become very hot and stuffy after dark on account of the many gas jets needed." And here follows a remark of Dr. Ord concerning one of the minor workshops operated for the account of a middleman: "One room, containing 1,280 cubic feet; persons present, 14; space for every person, 91.5 cubic feet. The girls looked haggard and neglected. There wages were said to be from 7 to 15 sh. per week, aside from tea...The hours of labor from 8 A. M. to 8 P. M. The small room, in which these 14 persons were crowded together, was badly ventilated. There were two movable windows and a fireplace, which was, however, closed. There were no special appliances of any kind for ventilation." (Page 27).

Part VI, Chapter 39

For the present, however, we leave this point, location, out of consideration and confine ourselves to natural fertility. Aside from climatic factors, etc., the difference in natural fertility is one of the chemical compositions of the top soil, that is of its different contents in plant nourishment. However, assuming the chemical composition and natural fertility in this respect to be the same for two areas, the actual fertility will be different according to whether these elements of plant nourishment have a form, in which they may be more or less easily assimilated and immediately utilised for nourishing plants. Hence it will depend partly upon the chemical, partly upon the mechanical development of agriculture, to what extent the same natural fertility may be made available in fields of the same natural fertility. Fertility, although an objective quality of the soil, always implies economic relations, a relation to the existing chemical and mechanical development in agriculture, of course it changes with such a development. By dint of chemical applications (such as the use of certain liquid manures to stiff clay loam, or burning of heavy clay soils) or of mechanical appliances (such as special plows for heavy soils) the obstacles may be removed, which made a soil of the same fertility as some other actually less fertile (drainage also belongs under this head). Or even the succession of soils in cultivation may be changed thereby, as was the case, for instance, with light sandy soil and heavy clay soil in a certain period of development of English agriculture. This shows once more that historically, in the succession of soils under cultivation, one may pass just as well from very fertile soils to less fertile ones as vice versa. The same may come to pass by any artificially created improvement in the composition of the soil, or by a mere change in the methods of agriculture. Finally the same result may be brought about by a change in the succession of the predominant kinds of soil, owing to different conditions of the subsoil, as soon as it is likewise taken into cultivation and turned over into top layers. This is caused either by the employment of new methods of agriculture (such as planting of stock feed), or any mechanical appliances, which either turn the subsoil into top layers, or mix it with the top soil, or cultivate the subsoil without throwing it up.